
Virtual Distro Dispatcher: A costless distributed
virtual environment from Trashware

Flavio Bertini, D. Davide Lamanna, Roberto Baldoni

{flavio.bertini, davide.lamanna, roberto.baldoni}@dis.uniroma1.it

Dipartimento di Informatica e Sistemistica ”Antonio Ruberti”
Università degli studi di Roma ”La Sapienza”, Italy

Abstract. Obsolete hardware can be effectively reused through intelli-
gent software optimization, which is possible only when source code is
available. Virtual Distro Dispatcher (VDD) is a system that produces
virtual machines on a central server and projects them on a number of
costless physical terminals. VDD is the result of an extreme software
optimisation based on virtualization and terminal servers. VDD creates
and projects Linux distros that are completely customizable and differ-
ent from each other. They are virtual desktop machines that can be used
for testing or developing and are completely controllable directly from
each terminal. Memory consumption has been strongly reduced without
sacrificing performances. Test results are encouraging to proceed with
the research towards clustering.
Keywords: Trashware, LTSP, User Mode Linux, Clustering, Virtualiza-
tion.

1 Introduction

The massive diffusion of Information and Communication Technologies (ICTs)
has as a consequence that a huge quantity of obsolete computers are widespread
around the world. The main reason why hardware needs to have higher and
higher performance is that software is, often uselessly, more and more resource
consuming and not accessible. Software development relies on hardware devel-
opment and vice versa. Such a vicious circle causes a damage for users, who are
obliged to buy new hardware even if they could use the old one in a much more
efficient way. In this scenario, Trashware movement [8] is spreading worldwide
to give to computers the correct time of obsolescence, thus facing the ecological
problem related to e-waste from its very roots. Doing Trashware means working
on a sustainable adoption of hardware resources which are still effectively usable
and are instead destined to dumps. Trashware is deeply related to Open Source
and Free Software movements. Open Source software represents an indispensable
tool, as it enables full control on hardware/software optimisation, whereas the
sadly common practice of not distributing software source-code prevents users
from almost any possibility of optimising their systems. The optimisation we pro-
pose in this article is based on two main concepts: virtualization and terminal



server. Virtualization is normally used to supply for servers (e.g., FTP or HTTP
servers), which guarantee security and protection as they are virtual. Instead of
this, we propose to run proper virtual desktop machines and then project them
to scarce and old computers (working as terminals), which are literally cost-
less thanks to Trashware. Such a distributed virtual environment is excellent for
testing Linux distributions. The Linux Terminal Server Project (LTSP) [3] is a
very cheap solution for building computer labs by just buying one good PC and
using a number of old machines as terminals. Virtual Distro Dispatcher (VDD),
which is based on it, supplies for several Linux distros that are completely cus-
tomizable and different from each other. They are virtual machines that can be
used for testing or whatever purpose, as they are completely controllable from
each terminal, whereas LTSP provides terminals that are all identical, lacking
in control, and only configurable una tantum by the server administrator. VDD
can dramatically reduce the cost of hardware for such a complex development
environment and it is licensed as GPL software. The virtualization system used
by VDD implies five main constraints to be respected:

C1 - Open Source software (for integration with other systems and max-
imum optimisation);

C2 - Modularity and file-based structure;
C3 - Easy and quick restore;
C4 - User level kernel execution;
C5 - Linux only emulation (no need for emulating other operating sys-

tems).

The choice is among five popular virtualization systems: VMWare [9], Xen [10],
Qemu [11], User Mode Linux [1],[4] and Bochs [12].

C1 C2 C3 C4 C5
VMWare

√

Xen
√ √ √ √

∗
QEMU

√ √ √

UML
√ √ √ √ √

Bochs
√ √ √

∗ Microsoft Windows R© license does not allow modifications to the operating
system. In the future, hopefully, it could be that we will be able to emulate that
operating system too

UML is very easy to manage, because we only need three files: an executable
guest kernel image, a root filesystem and a swap filesystem. Also for this reason,
we chose to start our research with UML, that is the only one satisfying all the
five constraints. That is also the main reason why our final choice was UML
(see the table above). The aim of the paper is to present an innovative system
which allows users and developers to approach Free Software in a secure and
inexpensive way. We use LTSP as a mean for distributing virtual sessions, as it



is quite stable and provides an easy and fast bootstrap for a large number of
thin clients. User Mode Linux is also very fast in starting and it is quite efficient
performance-wise. In section 2, we present some of the related works that are
the starting point of our piece of research. Section 3 explains what virtualization
is and how to get a virtual system working, focusing particularly on UML. In
section 4, we talk about the opportunity for joining UML and LTSP and in
section 5 we explain how to do it. Section 6 describes security and performance
issues that are relevant for a virtual laboratory made through VDD. Section 7
presents performance tests in a number of cases and section 8 deals with future
directions of our work, especially in order to speed up the whole system.

2 Related work

In Italy, there are several research groups doing Trashware, like Binario
Etico1. Their work is strictly focused on Free Software. For this reason, they
provide an excellent technical support, both on software solutions and configu-
ration, without which our research work would have not been possible. We were
able to set up a quite sophisticated testbed without any significant charge, ex-
cept from the purchase of two new machines, being able to support the working
charge coming from a network of obsolete computers (12 terminals). An impor-
tant contribution to Trashware was given by [5], describing how to integrate
clustering with LTSP. An extensive performance analysis shows how clustering
can be useful, especially in a distributed environment. This is the starting point
for the present work, which take into account virtualization as a new direction
to be explored and integrated. About virtualization, User Mode Linux (UML)
[1],[4] appears appropriate for integration with other technologies, in particular
the ones we are interested with. This is mainly due to its filesystem based struc-
ture, which allows for easy managing its components as separate modules [1].
Our piece of research is tightly based on UML, through which we have been able
to obtain a fast and easy to use virtual distribution. Many research groups [1],[4],
and individuals [6] are contributing to UML development2. Main contribution in
[6] is the introduction of skas0 mode (see section 6), as an alternative to tt-mode,
which presents strongly reduced security risks. Linux Terminal Server Project
[3], is also a good idea when Trashware is concerned. LTSP is already helping in
several circumstances. For example, schools can benefit of what Trashware and
LTSP does [7], when licenses and new hardware are not affordable. As the use of
LTSP and Trashware is growing everyday, this piece of research intends to take
to the extreme their possibilities. HPC clustering is an effective way to increase
performance [5],[8]. Our model of LTSP/UML based laboratory would benefit a
lot from clustering in order to reduce the physiologic slow-down caused by in-
tense use of several virtual machines. An HPC system like OpenMosix has been
1 Further informations at: http://trashware.linux.it/wiki/TrashWiki -

http://www.binarioetico.org - http://www.isf-roma.org
2 On [6], it is possible to get host and guest kernel-patches maintained by Paolo

Giarrusso.



already used with LTSP, as described in [5]. We now need to join clustering with
Terminal Server concept and Virtualization. Another important contribution to
this effort has been brought by a research study on cluster solutions, aiming at
scalability and high availability, based on OpenSSI, which we acknowledge in
section 9. In order to get into details of what VDD is and what is based on, we
need to have a look on what LTSP and UML are.

3 Virtualization

The present piece of research is strongly based on virtualization. The system
we set up is able to run a number of real and complete GNU/Linux virtual dis-
tributions. Designing a virtualization system involves the evaluation of a number
of issues concerning the use it is called for. There is a fair amount of software
available which supports the emulation of an operating system. Among to most
famous, one can cite: VMWare, Bochs, Qemu and Xen. Our first requirement was
to implement an Open Source system under GNU/GPL License3. The choice of
User Mode Linux (UML) as the engine for VDD appeared to us to be the most
appropriate. ”User Mode Linux is a safe, secure way of running Linux versions
and Linux processes”4. UML is composed of well-defined basic parts, including
an user-mode kernel image, which is executable in a command line shell, a root
filesystem (i.e. a single file fits all) and a swap file. UML is normally used to run
buggy software, including new kernels and distros, and to hack around without
exposing the physical Linux box. The fact of being based on filesystem images
is particularly suitable in a distributed environment like ours, where failover can
not be disregarded. Recovery is easy and fast. Other virtualization systems work
in such a way5, but do not offer opportunities for integration with the rest of
our system, which is completely Open Source. Also, the possibility of setting up
very easily a highly configurable development system is particularly attractive
when different virtual workstations needs to be created and distributed in the
same environment. Besides, thanks to its modular structure, one can recover or
substitute all its parts separately. If a different filesystem becomes necessary, for
instance, one can just operate on it, without influencing, e.g., the executable
kernel file. Another important aspect we took into account in our choice is that
it is possible not only to shape the host kernel, as we already highlighted, but
also the guest (UML) kernel. In such a way it is possible to supply for a huge
quantity of virtual hardware, much more than what real hardware can do. The
possibility to specify, inside the UML kernel configuration file, options like the
CPU architecture used by the host system, makes UML flexible and adaptable
pretty much in any circumstance.

3 General Public License is a Free Software license
4 Directly from http://user-mode-linux.sourceforge.net/
5 For example, VMWare works using image files containing the full installation of an

operating system.



4 UML and LTSP: Virtual machines and physical
terminals

UML is often being used to create operating systems that are entirely ded-
icated to accomplish only one task. For example, it is possible to dedicate a
Linux machine entirely to a FTP Server or a Web Server. This is particularly
useful when it is necessary for security reasons to limit the number of services
managed by a server at the same time. Apart from preventing attacks, such a
feature is attractive for us because a stable version of a machine is fully recov-
erable in any time, which makes it ideal for a development workstation. UML
allows to consider guest systems as real workstations. If one looks the machine
from outside, within the LAN topology it is part of, she will be able to see all
UML machines as normal PCs belonging to a computer network. If one is using
a PC in the same LAN, she will never know if she is communicating with a real
machine or a virtual one. Normally, all the virtual machines are physically run
and used on a single machine. Remote login to a particular virtual machine is of
course possible, but this is not at all what we mean by dispatching machines on
nodes of a LAN. We are indeed interested in projecting the whole machine to a
different node as opposed to just gain access to it from outside. For this reason,
we considered the integration of LTSP in our system. LTSP allows to connect
several diskless thin clients to a Linux Server. LTSP is based on four-services:
TFTP (Trivial File Transfer Protocol), DHCP (Dynamic Host Configuration
Protocol), XDMCP (X Display Manager Control Protocol) and NFS (Network
File System). These four services, together, allow for file transferring between
nodes, remote login, managing IP addresses without conflicts, and sharing the
minimal filesystem used by all nodes to work. The best way to join LTSP with
UML seemed to us to be through the Xorg6 Server support. As we said before,
we need to project virtual sessions to all the LAN thin clients. Xorg is actually
a server, even if it runs on a thin client. For this reason, we used it to show
graphical virtual sessions (i.e. KDE executed in a virtual terminal by an UML
session). Our approach is to put all thin-client Xorg servers in listening mode
on a specific socket using a minimal shell. Once UML virtual machines are up
and running, one is able to project their KDE sessions by simply doing an en-
vironmental variable export. The previous value of DISPLAY variable needs to
be overridden in order to indicate what is its new X server address and socket.
Finally, our window manager can be run by launching startkde command.

5 Dispatching on terminals: Virtual Distro Dispatcher

As we said, the purpose of this piece of research is to find the contact point
to unify virtualization to Terminal Server concept. The basic idea is to project
every virtual session (possibly completely different from each other) on every
thin client, in a perfectly transparent way. Virtual Distro Dispatcher provides

6 The X.Org Foundation Open Source Public Implementation of X11.



the possibility to obtain several different environments, one for each terminal. In
such an effort, there are two main approaches to consider: the first one is quite
easy to understand and to implement and consists of installing UML and setting
up LTSP inside it. VDD logic is a simple solution to realize a join between these
two technologies, but it has driven us to a fundamental issue: using a virtual
distro in order to supply for a needed service7, i.e. LTSP itself. Figure 1 shows
the architecture for this first approach. As it appears clear at a glance, this is

Fig. 1. The first approach

a restrictive methodology. It does not allow neither to obtain satisfying perfor-
mances, nor to get a scalable and customizable system. The reason why we do
not like this approach is that it is not possible for developers to have a choice.
Our work is mainly oriented to developers and debuggers necessities. What we
intend for customizable, in this context, is to give to developers the possibility
to choose what distribution to use for their tests or works. The other approach
is certainly more effective and proposes the opposite of what we have just de-
scribed: UML inside LTSP. In this case, LTSP plays the role of an intermediate
mean, which allows all terminals to use a virtual session. This approach is im-
plementable in two ways: Dynamic Assignation and Static Assignation (Figure
2 and 3). In the first mode, Server decides what is the distribution to send to
a thin client. In the second mode, instead, the generic thin-client user chooses
what to use herself.

In our laboratory, we used the Static Assignation. This choice is based only
on a practical reason. The laboratory is used also by inexperienced people (e.g.

7 In §4, e.g., we talk about installing a FTP server into a virtual machine.



Fig. 2. The second approach in Static Assignation case

students) and we thought it was better to decide ourself what distribution to
send on a thin client. The strong point of the last methodology (UML inside
LTSP) is that it is possible to switch easily among two assignation modes. The
second mode is recommended in a development environment in which node users
are expert system administrators. In fact, if some developer would like to do a
new kernel testing or try buggy software, she will decide what distribution is
better to use. Practically speaking, all what we need is to start UML on the
host, directly from the Terminal Server and, once a thin client has logged in, we
can get access to its minimal shell. From there, we can open an X Server socket.
Next step is to start a windows manager (e.g. KDE) from the Terminal Server
(into UML) after specifying the DISPLAY environment variable in order to tell
UML where its display is and to run the graphical session. The final result is
that it will be possible to use Linux by KDE on a thin client screen, all in a
virtual session.

6 Performance and security issues

UML development has pursued both memory usage efficiency and protection.
There are currently three working modes available, each of which presents dif-
ferent performance and security issues: TT-Mode, SKAS3-Mode, SKAS0-Mode.

TT-Mode: a first way of working of UML is based on a tracing thread
mode (tt-mode), whose job is to listen guest System Calls and to forward them
to the host system. Besides, in this mode, memory is basically shared between
processes and UML kernel. Typically, the guest kernel is allocated in the upper
bound of the address space. Processes instead, are allocated in the following 5



Fig. 3. The second approach in Dynamic Assignation case

GB of memory. This causes a serious security problem, because the memory is
shared between processes and kernel code. In fact, due to this situation, a false
process can easily execute code in kernel mode and prevent the guest kernel to
be a real (good) process. It is sufficient for someone to know the UML internal
structure and she can get into the host system directly.

Fig. 4. Address space division in each situation: tt, skas0 and skas3 modes

SKAS3-Mode: Problems encountered in tt-mode can be solved by using a
patch, whose aim is to modify the host kernel as well as to manage the address
space in a different way. Skas3, or Separate Kernel Address Space, has now got
to the third version. When applied to the host kernel, it adds a new file in /proc
(/proc/mm) and creates a new address space to hold the guest kernel. Regarding
performance aspects, there is a big amount of wasted memory working in this



mode. We can say that a lot of slow-downs can occur because, for every process
on the guest system, the host creates a new one straight away. The reason why
such a waste of memory occurs is that every process can live in a separate
address space. Every process has got a separate address space, which it shares
with kernel code and data. Skas3 prevents false processes to deliver an attack.
This is possible because of the isolation between guest kernel and processes. In
this case, we do not have memory sharing. There are no tracing threads and
system calls are intercepted by the guest kernel itself. For every guest process,
there is only one host process. There are two advantages doing so: no waste of
memory and no risk for UML crashes, resulting in a strongly reduced possibility
to compromise the host system integrity. As a matter of fact, what happen inside
UML is confined in itself. The only Skas3 con is that it is not always supported.
It depends on an old UML version and the host CPU architecture is not already
supported.

Skas0-Mode: This mode can be used when Skas3 mode is not supported.
For example, if we had an X86 64 host machine, skas3 would not be able to
work.

Fig. 5. Processes behaviour in guest and host system for each mode

As explained in [1],[6], it is possible to make something between Skas3 and tt-
mode. In fact, like the tt-mode, for every guest process, there is an host process
and, as for the Skas3 mode, the guest kernel will be executed in a separate
address space without a tracing thread. In this way, we can take advantage of
Skas3 performances even though there is an amount of wasted memory like the
tt-mode. Skas0 mode is less efficient than Skas3 but it is certainly better than
tt-mode. The Skas0 basic idea is to insert a little quantity of kernel code in
the shared memory in order to reduce opportunities for attacks. The system
we developed has been built upon two of three previously described modes:



Skas3 for the x86 CPU architecture and the Skas0 for the x86 64 CPU (only for
performance tests). Mainly, we have to consider the Skas3 mode. We do not use
UML versions which are not supporting Skas3 mode. Regarding the filesystem
image, which contains the GNU/Linux distribution, we chose to create a new one
by means of debootstrap utility. Our UML distribution is Debian GNU/Linux.
We got kernel sources from the official website8. After configuring the Debian
base system, we could start to use User Mode Linux.

7 Performance analysis

Our testbed has got the following characteristics:

– 1 Intel Pentium 4 3000 MHz
– 1024 Mbytes RAM
– 4 SATA 80Gb Hard Disks
– 13 100Mbps Ethernet cards
– 12 diskless thin clients9

– 1 100Mbps Ethernet switch

After several tests, the final system resulted to be quite usable, without
significant slow-downs. In order to analyse system performance, we chose to
evaluate computational time of a CPU bound process. The right test for us,
seemed to be a kernel compilation on its defconfig10. Our tests, whose results
are shown in Figure 6, consist of a vanilla kernel compilation in three cases:
firstly on the host system (A), then on a thin client (B) and finally on a thin
client inside UML (C). This test has been repeated ten times for each case in
order to estimate a mean value for any measurement.

The most significant case is C. As it is shown in Figure 6, the compilation
time in this third case is higher with respect to case A and B. These results
confirm the actual benefit that one would get by integrating a clustering system,
in order to increase performance (see section 8). The whole system could be
part of a bigger one, in which it is possible to integrate further technologies
to get a fully functional and faster final system. Although UML is host-CPU
optimized, the aim of who is writing is to go ahead. We are trying to find out
further techniques to improve the whole service. As a matter of fact, results
persuaded us to use Clustering HPC systems in order to improve performance
hits, even if we obtained a fully usable system with no significant slow-downs.
HPC Clustering oriented technologies we are considering are OpenMosix[13] or
OpenSSI[14]. Another possibility is to use an alternative virtualization system.
The next step can be to experiment Xen.

8 http://www.kernel.org
9 Generally we used many different architectures for thin clients, but the typical one

is a Pentium II@233 MHz with 64 Mbytes RAM, floppy disk, CD-ROM reader and
an Ethernet card.

10 For each test, we did make defconfig on the kernel tree.



Fig. 6. Benchmark results

8 Conclusion and future works

The combination of different technologies makes it possible to realize new sys-
tems, aiming at incrementing supplied services and/or their performance. Open
Source paradigm is essential in such an effort. The main innovation we presented
here is the fusion between a distributed system and virtualization. LTSP already
allows us to distribute login and GNU/Linux sessions to a thin-client LAN. But
systems showed on the screens are not virtual machines. They are the remote
execution of a single physical machine. Whereas we succeeded in distributing
virtualization on to a diskless node of a LAN. Virtualization dispatching allows
users to use their own distros and developers to do their real work in a cost-
less, secure and comfortable virtual environment. Performances analysis is an
important aspect to be considered when joining LTSP and UML. Virtual Distro
Dispatcher could be much lighter if supported by a distributed server instead
of a central one. In fact, if we consider large scale service distribution, the cen-
tral server could be lagged. Since we would like to enlarge VDD environments,
we think is absolutely necessary to boost up our system by using HPC cluster-
ing. Figure 7 shows a prototype of a full VDD based laboratory, which is also
supported by an HPC Clustering system.

In this case, we have two clusters and two possible LANs: one for virtual-
distro based thin-clients, and another one for LTSP based thin-client network.
We are hence proposing something scalable, accommodating different necessities.
This is a multiple sections example, whose aim is to show how one can easily
change and personalize the global system as needed. We intend now to set up an
HPC Clustering system, in order to enlarge virtualization dispatching without
any lag, so that more users can access our system.



Fig. 7. Future laboratory prototype

9 Acknowledgements

We wish to thank Andrea Leone. His work on scalable and high-available clus-
ters on a distributed platform is the presupposition and the natural course of our
piece of research. The support of our colleagues Daniele Carcasole and Alessan-
dro Di Stefano has been essential to mastering LTSP, a system on which they
conducted in-depth studies and research. Finally, we are grateful to Binario Etico
that provided hardware resources, expertise and a laboratory to conduct research
and tests.

References

1. Jeff Dike - User Mode LinuxR© (Bruce Perens Open Source)
2. William Stallings - Operating Systems: Internals and Design
3. Linux Terminal Server Project - http://www.ltsp.org
4. The User-Mode-Linux Kernel Home Page -

http://user-mode-linux.sourceforge.net/
5. Ruggero Russo, Davide Lamanna and Roberto Baldoni - Distributed software plat-

forms for rehabilitating obsolete hardware
6. Paolo Giarrusso: Skas and Guest patches -

http://www.user-mode-linux.org/ blaisorblade/
7. Tina Gasperson, Old school cuts ties with Windows,

http://business.newsforge.com/business/05/09/28/1843234.shtml?tid=37
8. http://trashware.linux.it/wiki/TrashWiki
9. VMWare - http://www.vmware.com/

10. Xen - http://www.xensource.com/
11. Qemu - http://fabrice.bellard.free.fr/qemu/
12. Bochs - http://bochs.sourceforge.net/
13. OpenMosix - http://openmosix.sourceforge.net/
14. OpenSSI - http://openssi.org/


